STRUCTURE OF CORYDALIDZINE, A NEW ALKALOID FROM CORYDALIS KOIDZUMIANA

Chiaki Tani, Naotaka Nagakura and Shin Hattori

Kobe Women's College of Pharmacy, Motoyama-cho, Higashinada-ku, Kobe, Japan (Received in Japan 29 December 1972; received in UK for publication 30 January 1973)

A tertiary diphenolic alkaloid corydalidzine has been isolated from Formosan <u>Corydalis</u> <u>koidzumiana</u> Ohwi along with twelve known alkaloids including 1-scoulerine, corydaline, sanguinarine and protopine¹⁾.

This paper describes the structure determination of the new alkaloid by spectroscopic methods and synthesis.

Corydalidzine (I), $C_{20}H_{23}O_4N$, mp 209-210° (in vacuo) ²⁾, $[\alpha]_D^{23}$ +333° (MeOH), UV λ_{max}^{EtOH} nm (log ϵ): 211.5(4.46), 225(4.27 sh.), 283.5(3.78), IR ν_{max}^{Nujol} cm⁻¹: 3475, was supposed to be a tetrahydroprotoberberine alkaloid³⁾. Its NMR spectrum ⁴⁾ showed signals due to one secondary methyl group (δ 0.83, d, J=7Hz), two methoxyl groups (δ 3.74, s and δ 3.75, s), four aromatic protons (δ 6.51, lH, s and δ 6.71, 3H, s), and two hydroxyl groups (δ 8.65, lH, s and δ 8.94, lH, s) disappearing on addition of D_2O . The mass spectrum of the alkaloid had a molecular ion at m/e 341 and typical fragment ions of tetrahydroprotoberberine skeleton⁵⁾ at m/e 178 and 164. Methylation of corydalidzine with diazomethane gave corydaline (II) ⁶⁾ confirming the absolute structure of the alkaloid except the location of two methoxyl and two hydroxyl groups.

NOE experiments revealed the substitution pattern of the A ring of corydalidzine. Irradiation at δ 2.50 which was assigned to one of the C-5 benzylic protons⁷⁾ increased the intensity of the signal at δ 6.51 by 10% indicating this signal to be attributed to C-4 aromatic proton. Irradiation of the hydroxyl signal at δ 8.65 also caused the increase of the area of the signal at δ 6.51 by 11%, while that at δ 6.71 was unaffected. Thus the hydroxyl group whose signal appears at δ 8.65 must be located at C-3 and consequently the methoxyl group on the A ring at C-2. The aromatic proton signals of corydalidzine showed only two singlets at δ 6.71(3H) and δ 6.51(1H) and no AB quartet was observed, suggesting that the D ring of corydalidzine could be substituted with C-9 methoxyl and C-10 hydroxyl groups^{8,9)}.

However, in the mass spectrum of corydalidzine, the fragment peak at m/e 163 was weak

804 No. 11

compared with that due to ion \underline{b} (m/e 164)^{5,8}. The results of high resolution mass spectrum revealed that the peak at m/e 163 was not due to ion \underline{c} but to the fragment formed from ion \underline{a} through the elimination of a methyl radical. The absence of the peak of ion \underline{c} could be due to the presence of C-13 methyl group because the fragmentation pattern of the compound (III), having no substituent at C-13, was completely in agreement with the reported data^{5,8}.

The Gibbs' test of corydalidzine was negative although isoquinoline alkaloids, having a hydroxyl group at C-6 position, give positive reaction 10). This phenomenon could also be attributed to the effect of C-13 methyl as corybulbine (IV), having the same substitution pattern of the A ring, is negative while corypalmine (V), is positive to the test. Accordingly, the NMR assignment of the substitution pattern of the D ring described above would be reasonable. We thus infer that the structure of corydalidzine be represented as I. This structure was finally confirmed by the following synthesis of dl-corydalidzine as shown in Chart 1.

Condensation of 3-benzyloxy-4-methoxyphenethylamine with 4-benzyloxy-3-hydroxyphenylacetic acid gave the amide (VI), mp 128-129°, which was converted into VII, mp 51-52°. Bischler-Napieralski cyclisation of VII followed by reduction with sodium borohydride gave 1-(4-benzyloxy-3-hydroxybenzyl)-1,2,3,4-tetrahydro-6-benzyloxy-7-methoxyisoquinoline (VIII), mp 137-139°. A solution of hydrochloride of VIII and 37% formalin was allowed to stand at pH 6.4 at room temperature overnight. The reaction products were tetrahydroprotoberberines (IX), mp 87-90° and (X), mp 169.5-170.5°. The main product (IX) was methylated with diazomethane to give the dimethoxy derivative (XI), mp 146-148.5°. Oxidation of XI with mercuric acetate gave the quaternary base (XII), mp 210° (decomp.), which was converted into the acetone adduct (XIII). Heating XIII with CH₃I in a sealed tube for 16 hours followed by reduction with sodium

borohydride gave XIV, mp 155-156.5°, whose B/C ring juncture was found to be trans from the chemical shift (60 MHz, in $CDCl_3$) of C-13 methyl group⁷⁾ (δ 0.95, d, J=7Hz). Debenzylation of XIV gave a phenolic dl-base (I), mp 156-157.5° (in vacuo)²⁾, which was identical with natural corydalidzine in TLC, UV, NMR and mass spectra.

This is the first example of natural 3,10-dihydroxytetrahydroprtoberberine.

$$C_6H_5CH_2O$$
 C_1O
 C_1O

$$\begin{array}{c} \mathsf{C}_{6}\mathsf{H}_{5}\mathsf{CH}_{2}\mathsf{O} \\ \mathsf{CH}_{3}\mathsf{O} \\ \\ \mathsf{R}_{3} \\ \\ \\ \mathsf{R}_{2} \\ \end{array} \\ \begin{array}{c} \mathsf{R}_{1} \\ \mathsf{O}\,\mathsf{CH}_{2}\mathsf{C}_{6}\,\mathsf{H}_{5} \\ \\ \\ \mathsf{R}_{2} \\ \end{array}$$

$$R_1 = OCH_3$$
, $R_2 = R_3 = H$ $R_3 = OCH_3$

XII

$$\mathsf{CH_3O} \qquad \mathsf{CH_2COCH_3} \\ \mathsf{CH_3O} \qquad \mathsf{CH_2COCH_3} \\ \mathsf{OCH_2C_6H_5}$$

XIII

Chart 1

806 No. 11

<u>Acknowledgment</u> --- The authers are grateful to Dr. T. Shingu, Faculty of Pharmaceutical Sciences, Kyoto University, for the measurements of 100MHz NMR spectra.

References

- 1. The 92th Annual Meeting of Pharmaceutical Society of Japan, Osaka, 1972.
- 2. Melting point of the sample placed in a vacuum capillary.
- 3. A.W. Sangster and K.L. Stuart, Chem. Rev., 65, 69 (1965).
- 4. Unless otherwise noted, NMR spectra were taken on a Varian HA-100 spectrometer in DMSO- d_6 with TMS as an internal standard.
- 5. C.-Y. Chen and D.B. MacLean, Can. J. Chem., 46, 2501 (1968).
- 6. P.W. Jeffs, Experientia, 21, 690 (1965).
- 7. C.K. Yu, D.B. MacLean, R.G.A. Rodrigo and R.H.F. Manske, Can. J. Chem., 48, 3673 (1970).
- 8. H. Kaneko and S. Naruto, Yakugaku Zasshi, 91, 101 (1971).
- 9. S. Naruto and H. Kaneko, Yakugaku Zasshi, 92, 1017 (1972).
- 10. H. Inouye, Y. Kanaya and Y. Murata, Chem. Pharm. Bull., 7, 573 (1959).